

Course summary

Course summary

- In this course, we:
 - Observed that there were issues with representing real numbers by finite-precision floating-point numbers
 - Introduced a number of tools that would be used for approximating solutions to numerical problems
 - We then looked at four different categories of numerical problems:
 - Evaluating the value of an expression
 - Approximating solutions to algebraic equations
 - Approximating solutions to analytic equations
 - Unconstrained optimization

3. Tools for developing numerical algorithms

Course summary

• Next, we looked at seven tools that we would use either to develop or analyze numerical algorithms, or describe patterns that would appear repeatedly in our algorithms

- 2. Iteration and the fixed-point theorem
 - We saw an iterative algorithm that appeared to converge to the square root of two
 - Later we saw this was a special case of Newton's method applied to $x^2 2 = 0$:

$$x - \frac{x^2 - 2}{2x} = \frac{x}{2} + \frac{1}{x}$$

- We described the fixed-point theorem:
 - Given an x_0 and a function f(x), if we define the iterative procedure that $x_{k+1} \leftarrow f(x_k)$, then if this converges, it converges to a solution of the equation x = f(x)

4. Sources of error

Course summary

- Following this, we did a deep dive into looking at and categorizing sources of error in modelling and numerical algorithms
 - Random error: errors resulting from the inability to make perfectly precise and accurate measurements
 - These can be described through statistical distributions

 We saw normally, uniformly and Poisson distributed errors
 - Systematic errors: errors that we can measure and compensate for in our models
- We then looked at sources of error:
 - Floating-point truncation error due to finite precision
 - Model, environmental, drift, production and calibration errors
- We described how averaging repeated readings will minimize random errors

- Our second class of problems was approximating solutions to algebraic equations and systems of algebraic equations
 - We started by seeing that the quadratic formula is not necessarily the best formula to find the roots of a quadratic polynomial
 - We transformed a non-linear algebraic equation to a root-finding problem in one variable
 - We saw more advanced techniques for iterative algorithms for approximating solutions to systems of linear equations
 - We then generalized Newton's method for approximating a solution to a system of non-linear equations

<page-header><image><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item>

